Data Augmentation for Morphological Reinflection

نویسندگان

  • Miikka Silfverberg
  • Adam Wiemerslage
  • Ling Liu
  • Lingshuang Jack Mao
چکیده

This paper presents the submission of the Linguistics Department of the University of Colorado at Boulder for the 2017 CoNLL-SIGMORPHON Shared Task on Universal Morphological Reinflection. The system is implemented as an RNN Encoder-Decoder. It is specifically geared toward a low-resource setting. To this end, it employs data augmentation for counteracting overfitting and a copy symbol for processing characters unseen in the training data. The system is an ensemble of ten models combined using a weighted voting scheme. It delivers substantial improvement in accuracy compared to a non-neural baseline system in presence of varying amounts of training data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Model Encoder-Decoder with Explicit Morphological Representation for Reinflection

Morphological reinflection is the task of generating a target form given a source form, a source tag and a target tag. We propose a new way of modeling this task with neural encoder-decoder models. Our approach reduces the amount of required training data for this architecture and achieves state-of-the-art results, making encoder-decoder models applicable to morphological reinflection even for ...

متن کامل

The LMU System for the CoNLL-SIGMORPHON 2017 Shared Task on Universal Morphological Reinflection

We present the LMU system for the CoNLL-SIGMORPHON 2017 shared task on universal morphological reinflection, which consists of several subtasks, all concerned with producing an inflected form of a paradigm in different settings. Our solution is based on a neural sequenceto-sequence model, extended by preprocessing and data augmentation methods. Additionally, we develop a new algorithm for selec...

متن کامل

Improving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection

Morphological reinflection is the task of generating a target form given a source form and the morpho-syntactic attributes of the target (and, optionally, of the source). This work presents the submission of Bar Ilan University and the Massachusetts Institute of Technology for the morphological reinflection shared task held at SIGMORPHON 2016. The submission includes two recurrent neural networ...

متن کامل

Morphological reinflection with convolutional neural networks

We present a system for morphological reinflection based on an encoder-decoder neural network model with extra convolutional layers. In spite of its simplicity, the method performs reasonably well on all the languages of the SIGMORPHON 2016 shared task, particularly for the most challenging problem of limited-resources reinflection (track 2, task 3). We also find that using only convolution ach...

متن کامل

Neural Multi-Source Morphological Reinflection

We explore the task of multi-source morphological reinflection, which generalizes the standard, single-source version. The input consists of (i) a target tag and (ii) multiple pairs of source form and source tag for a lemma. The motivation is that it is beneficial to have access to more than one source form since different source forms can provide complementary information, e.g., different stem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017